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MTH 201 MATHEMATICAL METHODS 1: (3 Units) (L30: P 0: T 1)  
Real-valued functions of a real variable. Real-valued functions of two or three variables. Review of 

differentiation and integration and their applications. Mean value theorem. Taylor series. Partial 

derivatives chain rule, extrema, langrange multipliers. Increments, differentials and linear 

approximations. Evaluation of line, integrals. Multiple integrals. Pre-requisite -MTH 103. 

 

1. Real-valued functions 

A function whose range lies within the real numbers i.e., no-root numbers and non-

complex numbers, is said to be real function, also called a real-valued function. In mathematical 

analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a 

real-valued function is a function whose domain is the real variables ℝ𝑛. So, a real-valued 

function is a function whose domain is a subset 𝐷 ∈ ℝ of the set ℝ of real numbers and the 

codomain is ℝ; such a function can be represented by a graph in the Cartesian plane.  

In simplest terms the domain of a function is the set of all values that can be plugged into a 

function and have the function exist and have a real number for a value. However, for the 

domain, we need to avoid division by zero, square roots of negative numbers, logarithms of zero 

and logarithms of negative numbers. The range of a function is simply the set of all possible 

values that a function can take. 

Most real functions that are considered and studied are differentiable in some interval. The 

most widely considered of such functions are the real functions, which are the real-valued 

functions of a real variable, that is, the functions of a real variable whose codomain is the set of 

real numbers. 

1.1 Real-valued function of a real variable 

Recall that a function is simply a rule for associating with each element of a set 𝐴 ∈ 𝐷 in 

the domain to an element of a set 𝐵 in the codomain. We often represent such an abstract 

function pictorially as 

 

 

 

 

 

We can also represent the same situation with the notation; 

 𝑓: 𝐴 ⟶ 𝐵 : 𝑥 ⟼ 𝑓(𝑎)  

which indicates that 𝑓 is a function that takes elements of the set 𝐴 to elements of the set 𝐵 

according to the rule 𝑎 ∈ 𝐴 maps to 𝑓(𝑏) ∈ 𝐵. The set 𝐴 is referred to as the domain of the 

function 𝑓 and the set 𝐵 is referred to as the target space and the set 

  

 

. . 𝑓(𝑎) 𝑎 

𝑓 

𝐵 𝐴 
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{𝑏 ∈ 𝐵 | 𝑏 = 𝑓(𝑎)      for some     𝑎 ∈ 𝐴} 

is called the image (or range) of 𝑓. 

 When the set 𝐴 is actually a subset of ℝ𝑛 then we say that 𝑓 ∶  ℝ𝑛 ⟶ 𝐵 is a function of 

several variables (even if the dimension 𝑛 is huge). If the target space 𝐵 is ℝ, the set of real 

numbers, then we say that 𝑓 ∶  𝐴 ⟶ ℝ is a real-valued function. Example, a linear equation, 𝑦 =

2𝑥, and a quadratic equation, 𝑦 = 𝑥2 − 4𝑥 + 3 are real-valued functions of one independent 

variable 𝑥. 

 

Examples 

(a) Find the domain of each of the following real-valued functions of real variable 

𝑓(𝑥) =
𝑥2 + 2𝑥 + 1

𝑥2 − 8𝑥 + 12
 

Solution:  

𝑓(𝑥) =
𝑥2+2𝑥+1

𝑥2−8𝑥+12
=

(𝑥+1)2

(𝑥−6)(𝑥−2)
 is defined for all satisfying (𝑥 − 6)(𝑥 − 2) ≠ 0, 𝑥 ≠

2,6. ∴ Domain (𝑓) = 𝑅 − {2,6} 

(b) Find the domain and range of each of the following real-valued function: 𝑓(𝑥) =

√𝑥 − 1. 

Solution: 𝑓(𝑥) = √𝑥 − 1 is defined for all 𝑥 satisfying 𝑥 − 1 ≥ 0, i.e., 𝑥 ≥ 1. 

Now, let 𝑦 = √𝑥 − 1. Clearly, 𝑦 ≥ 0 for all 𝑥 ∈ [1, ∞]. So, range 𝑓(𝑥) = [0, ∞] 

(c) Find the domain and range of each of the following real-valued function: 𝑓(𝑥) = |𝑥 −

1|. 

Solution: We have, 𝑓(𝑥) = |𝑥 − 1|. Clearly, 𝑓(𝑥) is defined for all 𝑥 ∈ 𝑅. So, 

domain (𝑓) = 𝑅. Also, 𝑓(𝑥) = |𝑥 − 1| ≥ 0 for all 𝑥 ∈ 𝑅. So, range (𝑓) = [0, ∞] 

 

1.1.1 Graphs of real-valued functions of a single variable 

A real-valued function of real numbers can be represented in the Cartesian plane by 

a graph, and such graph can identify properties of that function: for example from the 

graph 
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we see that 𝑓(𝑥) has 

 a discontinuity at 𝑥 =  𝑐 

 derivatives everywhere except at the points a, b, and c 

 local maxima at the points a and d 

 local minima at the points b and e 

From the graph, the set of 𝑦-values taken on by 𝑓 is the range of the function. The 

symbol 𝑦 is the dependent variable of 𝑓, and 𝑓 is said to be a function of the independent 

variables 𝑥. As we shall see later, graphical methods are also very useful in elucidating 

the behavior of real-valued functions of several variables. 

1.2 Real-valued function of several variables 

A real-valued function 𝑓 defined on a subset  𝐷  of  ℝ2 is a rule that assigns to 

each point  𝑓(𝑥, 𝑦)  in  𝐷  a real number  𝑓(𝑥, 𝑦) . The largest possible set  𝐷  in  ℝ2  on 

which  𝑓  is defined is called the domain of  𝑓 , and the range of  𝑓  is the set of all real 

numbers  𝑓(𝑥, 𝑦)  as  (𝑥, 𝑦)  varies over the domain  D . A similar definition holds for 

functions  𝑓(𝑥, 𝑦, 𝑧)  defined on points  (𝑥, 𝑦, 𝑧)  in  ℝ3 . So, suppose 𝐷 is a set of n-

tuples of real numbers, (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛). A real-valued function 𝑓 on 𝐷 is a rule that 

assigns a single real number 

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛) 

to each element in 𝐷. The set 𝐷 is the function’s domain. The set of 𝑦-values taken on by 

𝑓 is the range of the function. The symbol 𝑦 is the dependent variable of 𝑓, and 𝑓 is said 

to be a function of the 𝑛 independent variables 𝑥1 to 𝑥𝑛. We also call the 𝑥’s the 

function’s input variables and we call 𝑦 the function’s output variable. 
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Subsequently, a real-valued function of two variables is just a function whose 

domain is ℝ2 and whose range is a subset of ℝ1 or simply ℝ, the real numbers. If we 

view the domain 𝐷 as column vectors in ℝ𝑛, we write the function as 

𝑓 (

𝑥1

𝑥2

𝑥3

)   

where 𝑥1, 𝑥2, 𝑥3 are the independent variables. Example is the volume of a right circular 

cylinder which is a function of the radius and height, 

𝑉 =  𝑓(𝑟, ℎ)       or      𝑉 =  𝜋𝑟2ℎ 

The volume of the cylinder is a function of its radius and height. Observe that the volume 

increases as both the radius and the height increase. 

Examples 

(a) The domain of the function: 𝑓(𝑥, 𝑦) = 𝑥𝑦, is all the ℝ2, and the range of 𝑓 is all of ℝ. 

(b) The domain of the function: 𝑓(𝑥, 𝑦) =
1

𝑥−𝑦
 is all of ℝ2 except the points (𝑥, 𝑦) for 

which 𝑥 = 𝑦. That is, the domain is the set of 𝐷 = {(𝑥, 𝑦): 𝑥 ≠ 𝑦}. The range of 𝑓 is 

all real numbers except 0. 

(c) The domain of the function: 𝑓(𝑥, 𝑦) = √1 − 𝑥2 − 𝑦2 is the set 𝐷 = {(𝑥, 𝑦): 𝑥2 +

𝑦2 ≤ 1},since the quantity inside the square root is non-negative if and only if 1 −

(𝑥2 + 𝑦2) ≥ 0. We see that 𝐷 consists of all points on and inside the unit circle  

(d) The domain of the function: 𝑓(𝑥, 𝑦, 𝑧) = 𝑒𝑥+𝑦+𝑧 is all of ℝ3, and the range of  𝑓  is all 

positive real numbers. 

 

1.2.1 Graphs of Real-Valued Functions of Several Variables 

Let 𝑓: ℝ𝑛 ⟼ ℝ be a real-valued function of several variables. The graph of 𝑓 is 

the set of points in ℝ𝑛+1 of the form 

{(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛 , 𝑥𝑛+1) ∈ ℝ𝑛+1 | 𝑥𝑛+1 = 𝑓(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛)} 

Example, consider the function: ℝ𝑛 ⟼ ℝ: (𝑥, 𝑦) ⟼ 𝑥2 + 𝑦2. The graph of 𝑓 is the set of 

points {(𝑥, 𝑦, 𝑧) ∈ ℝ3 | 𝑧 = 𝑥2 + 𝑦2} 
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Unfortunately, the use of graphs to visualize functions is really only effective for 

functions with 1 or 2 variables. To draw the graph of a function of 3 variables requires a 

4-dimensional space to draw the picture (and this is pretty hard to even imagine at your 

level). 

A function  𝑓(𝑥, 𝑦)  defined in  ℝ2  is often written as  𝑧 = 𝑓(𝑥, 𝑦) , so that the 

graph of  𝑓(𝑥, 𝑦)  is the set  {(𝑥, 𝑦, 𝑧): 𝑧 = 𝑓(𝑥, 𝑦)}  in  ℝ3 . So we see that this graph is a 

surface in  ℝ3 , since it satisfies an equation of the form  𝐹(𝑥, 𝑦, 𝑧) = 0  (namely, 

𝐹(𝑥, 𝑦, 𝑧)  =  𝑓 (𝑥, 𝑦)  −  𝑧). The traces of this surface in the planes  𝑧 = 𝑐 , where  c  

varies over  ℝ , are called the level curves of the function. Equivalently, the level curves 

are the solution sets of the equations  𝑓(𝑥, 𝑦) = 𝑐 , for  𝑐  in  ℝ . Level curves are often 

projected onto the  𝑥𝑦 -plane to give an idea of the various “elevation” levels of the 

surface (as is done in topography). 

Example 

The graph of the function: 𝑓(𝑥, 𝑦) =
𝑠𝑖𝑛√𝑥2+𝑦2

√𝑥2+𝑦2
 

is shown below. Note that the level curves (shown both on the surface and projected onto 

the  𝑥𝑦 -plane) are groups of concentric circles. 

 

 



Dr. E.O. Ohwadua Mathematical Methods I  6 

 

Observe what happens to the function in the example above, at the point  (𝑥, 𝑦) = (0,0) , 

since both the numerator and denominator are 0 at that point. The function is not defined 

at (0,0), but the limit of the function exists (and equals 1) as  (𝑥, 𝑦)  approaches (0,0).  

 

Applications of Differentiation 

Maximum and Minimum Values 

Definition: Let 𝑐 be a number in the domain 𝐷 of a function  . Then 𝑓(𝑐) is the 

 Absolute maximum value of 𝑓 on 𝐷 if 𝑓(𝑐) ≥ 𝑓(𝑥) for any 𝑥 ∈ 𝐷 

 Absolute minimum value of 𝑓 on 𝐷 if 𝑓(𝑑) ≤ 𝑓(𝑥) for any 𝑥 ∈ 𝐷 

Example: 𝑓(𝑥) = 𝑥2, 𝑥 ∈ [−3,3] 

                     

     

 

                                                              

                                            
 

 

             

𝑐 = 0  -  absolute minimum 

𝑐 = ±3  -  absolute maximum 

𝑦 = 0, 9  are extreme values 

 

Other names: an absolute maximum or minimum is sometimes called a global maximum or 

minimum. The maximum and minimum values of are called extreme values of 𝑓. 

 

Definition: The number 𝑓(𝑐) is a 

- Local maximum value of 𝑓 if 𝑓(𝑐) ≥ 𝑓(𝑥) for any 𝑥 near 𝑐. 

- Local minimum value of 𝑓 if 𝑓(𝑐) ≤ 𝑓(𝑥) for any 𝑥 near 𝑐. 

        

 

                  

   

  

 

 

 

𝑦 = 𝑓(𝑥) 

𝑥 

𝑓(𝑐) ≥ 𝑓(𝑥) 

𝑐 

𝑑 

𝑓(𝑑) ≤ 𝑓(𝑥) 

 

−3 3 

9 − 

−
 

−
 

Absolute mazimum 

Absolute minimum 

 

global max 

local max 

global min. 
local min 
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Example: 𝑓(𝑥) = sin 𝑥 

           1-  

  

         -1 -  

Maximum: 𝑥 =
𝜋

2
+ 2𝑘𝜋 

Minimum: 𝑥 = −
𝜋

2
+ 2𝑘𝜋 

 

Example: 𝑦 = 𝑥3 

  

 

 

 

 

 

𝑓(𝑥) is everywhere, no min/max. 

 

When does a function have extreme values? 

Theorem: If 𝑓 is differentiable (continuous) on a closed interval [𝑎, 𝑏], then 𝑓 attains an 

absolute maximum value 𝑓(𝑐) and absolute minimum value 𝑓(𝑑) at some numbers 𝑐, 𝑑 ∈ [𝑎, 𝑏]. 

 

                                    absolute max      abs. max. 

 

𝑓 is  

continuous                                                                                                         

                                absolute min    abs. min.    

               𝑎               𝑏 

                   𝑎                    𝑏 

 

     no absolute max 

𝑓 is discontinuous:      

 

 

 

 

                                            𝑎                                                        𝑏  

                    no absolute max. 

 

      𝑓 is continuous but on an open interval (𝑎, 𝑏): 

                                                𝑎                              𝑏 
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Fermat's Theorem: If 𝑓 has a local maximum or minimum at 𝑐, and if 𝑓′(𝑐) exists, then 

𝑓′(𝑐) = 0. 

Proof: 

Assume 𝑓 has local max. at 𝑐, then 

𝑓(𝑐) ≥ 𝑓(𝑥) for 𝑥 close to 𝑐  and   𝑓(𝑐) ≥ 𝑓(𝑐 + ℎ), where ℎ is close to 0 

Thus, 

                     𝑓(𝑐 + ℎ) − 𝑓(𝑐) ≤ 0 

Now, let ℎ > 0, then 

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
≤ 0 

Hence, 

𝑓′(𝑐) = lim
ℎ→0

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
= lim

ℎ→0

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
≤ 0 

Let ℎ < 0,  
𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
≥ 0  and 𝑓′(𝑐) = lim

ℎ→0

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
≥ 0.   Thus, 𝑓′(𝑐) = 0. 

Caution: The converse of Fermat's Theorem is false in general. 

Example: 𝑓(𝑥) = 𝑥3. 𝑦 

𝑓′(𝑥) = 3𝑥2  and 𝑓′(0) = 0, 

but no local min/max. 

 

  

 𝑥 

  𝑦 = 𝑥3. The cubic function. 

Example: 𝑓(𝑥) = |𝑥| 

0 is a local min, but 𝑓′(0) dne (does not exist).                  𝑦 

 

 

                                                                                                                      𝑥 

Note: However, Fermat's Theorem suggests that we should start looking for extreme values at 

numbers where the derivative is zero or does not exist. 

Definition: A critical number of a function 𝑓 is a number 𝑐 ∈ 𝐷 such that either 𝑓′(𝑐) = 0 or 

𝑓′(𝑐) does not exist. 

−
 

−
 −
 𝑐 + ℎ 𝑐 + ℎ 

ℎ > 0 ℎ < 0 
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Example: Find the critical numbers of 𝑓(𝑥) =
𝑥

1+𝑥2
. 

𝑓′(𝑥) =
(1 + 𝑥2) − 𝑥(2𝑥)

(1 + 𝑥2)2
=

1 − 𝑥2

(1 + 𝑥2)2
= 0 

Thus, 

            1 − 𝑥2 = 0  ⟹  𝑥 = ±1, which is the critical numbers. 

Rephrase Fermat's Theorem: If 𝑓 has a local maximum or minimum at 𝑐, then 𝑐 is a critical 

number of 𝑓. 

Closed Interval Method: To find the absolute maximum and minimum values of a continuous 

function 𝑓 on a closed interval [𝑎, 𝑏]: 

 Find the values of 𝑓 at the critical numbers of 𝑓 in (𝑎, 𝑏). 

 Find the values of 𝑓 at the endpoints of the interval. 

 The largest of the values is the absolute maximum; the smallest value is the absolute 

minimum. 

 

Example: Find the absolute maximum and minimum values of 

                                                                                    𝑓(𝑥) = 𝑥3 − 6𝑥2 + 5 on [−3,5]. 

𝑓′(𝑥) = 3𝑥2 − 12𝑥 = 0  or 𝑥(𝑥 − 4) = 0 

Thus, 

 𝑥 = 0,4 ∈ [−3,5] 

𝑓(0) = 5  and 𝑓(4) = −27  ⟹  (0,5) is the abs. max. 

𝑓(−3) = −76  and  𝑓(5) = −20, so (−3, −76) is the abs. min. 

Example: 𝑓(𝑥) = 𝑒𝑥 + 𝑒−2𝑥, 0 ≤ 𝑥 ≤ 1.  

𝑓′(𝑥) = 𝑒𝑥 + 𝑒−2𝑥(−2) = 𝑒𝑥 − 2𝑒−2𝑥 

                                                                            = 𝑒−2𝑥(𝑒3𝑥 − 2) = 0 

but,, 

 𝑒−2𝑥 ≠ 0,   so,   𝑒3𝑥 = 2  or 3𝑥 = ln 2  ⟹  𝑥 =
1

3
ln 2 

Thus, 

 𝑓 (
1

3
ln 2) = 1.89, so,  (

1

3
ln 2 , 1.89)  - abs. min. 

and 

 𝑓(0) = 2, and  𝑓(1) = 2.84  ⟹  (1, 2.84) -  abs. max. 

 

Rolle's Theorem: Let 𝑓 be a function such that 

 𝑓 is continuous on [𝑎, 𝑏] 

 𝑓 is differentiable on (𝑎, 𝑏) 

 𝑓(𝑎) = 𝑓(𝑏) 

Then, there is a number 𝑐 in (𝑎, 𝑏) such that 𝑓′(𝑐) = 0. 
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Proof:  

Case I:  𝑓(𝑥) = const. = 𝑘,  𝑓(𝑎) = 𝑓(𝑏) = 𝑘                             𝑘 

 𝑓′(𝑥) = 0  for any 𝑥 ∈ (𝑎, 𝑏) 

 Take any 𝑐 from (𝑎, 𝑏) 

                                                                                                            𝑎         𝑏 

Case II: 𝑓(𝑥) > 𝑓(𝑎) for some 𝑥 ∈ (𝑎, 𝑏) 

𝑓(𝑥) must have max. value for some 𝑥 ∈ (𝑎, 𝑏) 

⟹ by Fermat’s theorem, 𝑓′(𝑐)                                      

                                                                                           𝑎           𝑏             𝑎                   𝑏 

Case III: 𝑓(𝑥) < 𝑓(𝑎) for some 𝑥 ∈ (𝑎, 𝑏) 

𝑓(𝑥) must have min value for 𝑐 ∈ (𝑎, 𝑏)                                                                                                             

Thus, by Fermat’s theorem, 𝑓′(𝑐) = 0                                      

                                                                                           𝑎           𝑏 
                                                                                                             𝑎                   𝑏 

Example: Prove that the equation 𝑥13 + 7𝑥 − 5 = 0 has exactly one (real) root. 

𝑓(𝑥) = 𝑥13 + 7𝑥 − 5 

So, 

 𝑓(0) = −5  and 𝑓(1) = 3, ( −5 ≤ 0 ≤ 3) 

By IVT (Intermediate Value Theorem), there is 𝑐 ∈ (0,1) such that 𝑓′(𝑐) = 0. 

Now, suppose there are two roots 𝑎, 𝑏 such that 𝑓(𝑎) = 0 = 𝑓(𝑏),  

⟹ by Rolle’s theorem, 

  ∃ 𝑑 ∈ (𝑎, 𝑏), s.t., 𝑓′(𝑑) = 0 

But, 

 𝑓′(𝑥) = 13𝑥2 + 7 ≥ 7 > 0, which is a contradiction. 

 

Mean Value Theorem (MVT): Let 𝑓 be a function such that 

 𝑓 is continuous on [𝑎, 𝑏] 

 𝑓 is differentiable on (𝑎, 𝑏) 

Then there is a number 𝑐 ∈ (𝑎, 𝑏) such that 

𝑓′(𝑐) =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
 

or 

𝑓(𝑏) − 𝑓(𝑎) = 𝑓′(𝑐)(𝑏 − 𝑎) 

Geometric interpretation: There is a point in (𝑎, 𝑏)  

such that the tangent line at that point is parallel to  

the secant line going through points (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏)).   

 

 

 

 

𝐵 (𝑏, 𝑓(𝑏)) 

| | 

𝑎 b 
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Proof:  

Equation of a line AB,  

  𝑦 = 𝑓(𝑎) +
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
(𝑥 − 𝑎) 

Let 𝑔(𝑥) = 𝑓(𝑥) − [𝑓(𝑎) +
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
(𝑥 − 𝑎)]     

 

 

Recall that by Rolle’s theorem, we have 

1) 𝑔(𝑥) is continuous on [𝑎, 𝑏] 

2) 𝑔(𝑥) is differentiable on (𝑎, 𝑏) such that 𝑔′(𝑥) = 𝑓′(𝑥) −
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 

3) 𝑔(𝑎) = 𝑓(𝑎) − 𝑓(𝑎) −
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
(𝑎 − 𝑎) = 0 

𝑔(𝑏) = 𝑓(𝑏) − 𝑓(𝑎) −
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
(𝑏 − 𝑎) = 0 

So, 𝑔(𝑎) = 𝑔(𝑏) 

By Rolle’s theorem, there ∃  𝑐 ∈ (𝑎, 𝑏) s.t. 𝑔′(𝑐) = 0 

So,  

 0 = 𝑔′(𝑐) = 𝑓′(𝑐) −
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 

Hence, 

 𝑓′(𝑐) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 

 

Example: Suppose we know that 𝑓(𝑥) is continuous and differentiable on [−7,0], 𝑓(−7) = −3, 

and 𝑓′(𝑥) ≤ 2. What is the largest possible value for 𝑓(0)? 

 

By MVT, there is 𝑐 ∈ [−7,0], such that, 

  𝑓′(𝑐) =
𝑓(0)−𝑓(−7)

0−(−7)
=

𝑓(0)−(−3)

7
 

i.e., 

  (7)𝑓′(𝑐) = 𝑓(0) + 3 

  𝑓(0) = (7)𝑓′(𝑐) − 3 ≤ 7(2) − 3 = 11,  (given 𝑓′(𝑐) ≤ 2) 

 

Remark: If 𝑓′(𝑥) = 0 for all 𝑥 ∈ (𝑎, 𝑏), then 𝑓 is constant on (𝑎, 𝑏). 

Proof: 

Let 𝑥1, 𝑥2 ∈ (𝑎, 𝑏) s.t. 𝑥1 < 𝑥2 

𝑓(𝑥) is differentiable on (𝑎, 𝑏) ⟹ it is diff. on (𝑥1, 𝑥2) and, thus, continuous on [𝑥1, 𝑥2] 

By MVT, there ∃ 𝑐 ∈ (𝑥1, 𝑥2) s.t. 

     𝑓′(𝑐) =
𝑓(𝑥2)−𝑓(𝑥1)

𝑥1,𝑥2
= 0 ⟹ 𝑓(𝑥1) = 𝑓(𝑥2) 

Since 𝑥1, 𝑥2 are any numbers from (𝑎, 𝑏), 𝑓 is constant on (𝑎, 𝑏). 

 

 
A 

B 

𝑓(𝑥) 

g(𝑥) 
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Example: We illustrate The Mean Value Theorem by considering 𝑓(𝑥) = 𝑥3 on the interval [1; 

3]. 

Observe that 𝑓 is a polynomial and so continuous everywhere. For any 𝑥 we see that  

𝑓′(𝑥) = 3𝑥2 

So 𝑓 is continuous on [1; 3] and differentiable on (1, 3). So the Mean Value theorem applies to 

𝑓 and [1; 3]. 

Thus, 

𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
=

𝑓(3) − 𝑓(1)

3 − 1
=

27 − 1

2
= 13 

Hence, 

𝑓′(𝑐) = 3𝑐2 

So we seek 𝑐 in [1,3] with  

3𝑐2 = 13 

iff  

𝑐2 =
13

3
   or  𝑐 = ±√

13

3
 

However, −√
13

3
 is not in the interval (1,3), but √

13

3
 is a little bigger than √

12

3
= √4 = 2. 

So, 𝑐 = √
13

3
 is in the interval (1,3), and  

𝑓′(𝑐) = 𝑓
′(√13

3
)

= 13 =
𝑓(3) − 𝑓(1)

3 − 1
=

𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
 

Let's look again at the two theorems together. 

Rolle's Theorem: Let 𝑎 < 𝑏. If 𝑓 is continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏) and 

𝑓(𝑎) < 𝑓(𝑏), then there is a 𝑐 in (𝑎, 𝑏) with 𝑓′(𝑐) = 0. 

Mean Value Theorem: Let 𝑎 < 𝑏. If 𝑓 is continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏) then 

there is a 𝑐 in (𝑎, 𝑏) such that 

𝑓′(𝑐) =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
 

 

Corollary: If 𝑓′(𝑥) = 𝑔′(𝑥) for all 𝑥 ∈ (𝑎, 𝑏), then 𝑓 − 𝑔 is constant on (𝑎, 𝑏). 

Proof: 

 ℎ(𝑥) = 𝑓(𝑥) − 𝑔(𝑥) 

Thus, 
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 ℎ′(𝑥) = 𝑓′(𝑥) − 𝑔′(𝑥) = 0 for all 𝑥 ∈ (𝑎, 𝑏) 

By previous fact, ℎ(𝑥) = const. 

 ⟹ 𝑓 − 𝑔 = const. 

 

How Derivatives Affect the Shape of a Graph 

Increasing/Decreasing Test: 

 If 𝑓′(𝑥) > 0 on an interval, then 𝑓 is increasing on that interval. 

 If 𝑓′(𝑥) < 0  on an interval, then 𝑓 is decreasing on that interval. 

Proof: 

Let 𝑥1, 𝑥2 and if 𝑓′(𝑥) > 0,  then 𝑓(𝑥1) < 𝑓(𝑥2) 

Thus, 𝑓(𝑥) is differentiable on (𝑥1, 𝑥2 ) 

By MVT, there is 𝑐 ∈ (𝑥1, 𝑥2), such that 

𝑓′(𝑐) =
𝑓(𝑥2) − 𝑓(𝑥1)

𝑥1 − 𝑥2 
 

or, 

 𝑓(𝑥2) − 𝑓(𝑥1) = 𝑓′(𝑐)(𝑥2 − 𝑥1) > 0 

⟹ 𝑓(𝑥2) > 𝑓(𝑥1)  

Thus, 𝑓(𝑥) is increasing. 

 

Example: Find the intervals where 𝑓(𝑐) = 4𝑥3 + 3𝑥2 − 6𝑥 + 1 is increasing or decreasing. 

 

𝑓′(𝑥) = 12𝑥2 − 6𝑥 − 6 = 0   or   2𝑥2 − 𝑥 − 1 = 0 

i.e., 

 (2𝑥 − 1)(𝑥 + 1) = 0,  which gives,    𝑥 =
1

2
, −1 are critical points. 

Hence, 𝑓(𝑥) is increasing  

on (−∞, −1) ∪ (
1

2
, ∞) or (−1,

1

2
) 

 

 

First Derivative Test: 

Let 𝑐 be a critical number of a continuous function 𝑓. Then, 

 If 𝑓′ changes from positive to negative at 𝑐, then has a 

local max at 𝑐. 

 

 

 

 If 𝑓′ changes from negative to positive at 𝑐, then 𝑓 

has a local min at 𝑐. 

 

 

    

−1 1

2
 

+ + − 



Dr. E.O. Ohwadua Mathematical Methods I  14 

 

 

 

 If 𝑓 does not change sign at 𝑐, then 𝑓 has no local max or min at 𝑐. 

 

 
 

Example: Given 𝑓(𝑥) = 4𝑥3 + 3𝑥2 − 6𝑥 + 1. Find the local minimum/maximum values. 

 

Recall from the example above that the critical points are (−1,
1

2
). 

Hence,  

      𝑓(−1) = 6   and   𝑓 (
1

2
) = −0.75   

 

 

Therefore, (−1,6) is local max. 

                  (
1

2
, −0.75) is local min. 

 

Example: Given that (𝑥) = cos2 𝑥 − 2 sin 𝑥,   0 ≤ 𝑥 ≤ 2𝜋, find the local minimum/maximum 

values of 𝑓. 

 

𝑓′(𝑥) = 2 cos 𝑥(− sin 𝑥) − 2 cos 𝑥 = 0     

i.e.,  

 −2 cos 𝑥(1 + sin 𝑥) = 0 

which gives, 

 cos 𝑥 = 0   or      sin 𝑥 = −1 

Thus, 

 𝑥 =
𝜋

2
,

3𝜋

2
 

The critical points are: 𝑓 (
𝜋

2
) = −2,  and  𝑓 (

3𝜋

2
) = 2. 

Therefore, 

  (
𝜋

2
, −2) – local min.   and   (

3𝜋

2
, 2) – local max. 

Concavity and the Second Derivative Test 

The first derivative describes the direction of the function. The second derivative 

describes the concavity of the original function. Concavity describes the direction of the curve, 

how it bends... 

    

−1 1

2
 

+ + − 

max 
min 

    

𝜋

2
 

3𝜋

2
 

- - + 

min max 
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Just like direction, concavity of a curve can change, too. The points of change are called 

inflection points. 

 

Concavity Test: 

 If 𝑓′′(𝑥) > 0 on an interval, then the graph of 𝑓 is concave up (CU) on that interval. 

 If 𝑓′′(𝑥) < 0 on an interval, then the graph of 𝑓 is concave down (CD) on that interval. 

 

Definition: A point 𝑃 on a curve 𝑦 = 𝑓(𝑥) is called an inflection point (IP) if 𝑓 is continuous 

there and the curve changes from CU to CD or vise versa at 𝑃. 

 

Example: Given that 𝑓(𝑥) = 𝑥2 ln 𝑥, find the intervals of concavity and the inflection points. 

 

𝑓′(𝑥) = 𝑥2 (
1

𝑥
) + 2𝑥(ln 𝑥) = 𝑥 + 2𝑥(ln 𝑥) 

and 

𝑓′′(𝑥) = 1 + 2𝑥 (
1

𝑥
) + 2(ln 𝑥) = 3 + 2 ln 𝑥 = 0 

i.e., 

   ln 𝑥 = −
3

2
  or  𝑥 = 𝑒−

3

2 

So, 𝑓(𝑥) is CD on (0, 𝑒−
3

2)   and    CU on (𝑒−
3

2, ∞)   

Inflection point (IP) is (𝑒−
3

2, 𝑓 (𝑒−
3

2) ) = (0.223, 𝑓(0.223)) 

 

Second Derivative Test: Let 𝑓′′ be continuous near 𝑐: 

 If 𝑓′(𝑐) = 0 and 𝑓′′(𝑐) > 0, then 𝑓 has a local minimum at 𝑐, (CU). 

 If 𝑓′(𝑐) = 0 and 𝑓′′(𝑐) < 0, then 𝑓 has a local maximum at 𝑐, (CD). 

 

Example: 𝑓(𝑥) =
𝑥2

𝑥−1
, find the local minimum and maximum values. 

𝑓′(𝑥) =
2𝑥(𝑥 − 1) − 𝑥2

(𝑥 − 1)2
=

𝑥2 − 2𝑥

(𝑥 − 1)2
=

𝑥(𝑥 − 2)

(𝑥 − 1)2
= 0 

Thus,  

 𝑥 = 0,2 

    

 

- + 

𝑒−
3
2 

0 

CU CD 
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and  

 𝑓′′(𝑥) =
(2𝑥−1)(𝑥−1)2−(𝑥2−2𝑥)[2(𝑥−1)]

(𝑥−1)4 =
2[(𝑥−1)2−(𝑥2−2𝑥)]

(𝑥−1)3 =
2

(𝑥−1)3 

It follows that, 

  𝑓′′(0) = −2 < 0 → max. 

  𝑓′′(2) = 2 > 0 →  min. 

 

  

Application of Definite Integral (Area between Curves) 

Area of Region between Curves 

1. If 𝑓(𝑥) ≥ 0 on [𝑎, 𝑏], then the area under the curve 𝑦 = 𝑓(𝑥) over [𝑎, 𝑏] is, 

𝐴 = ∫ 𝑓(𝑎)𝑑𝑥
𝑏

𝑎
 

 

 

 

 

 

2. If 𝑓(𝑥) and 𝑔(𝑥) are continuous with 𝑓(𝑥) ≥ 𝑔(𝑥) on [𝑎, 𝑏], then the area of the region 

between the curves 𝑦 = 𝑓(𝑥) and 𝑦 = 𝑔(𝑥) from 𝑎 to 𝑏 is 

        𝐴 = ∫ [𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥
𝑏

𝑎
  

 

 

 

 

Example: Find the area bounded by the graph of 𝑦 = 3 − 𝑥 and 𝑦 = 𝑥2 − 9. 

To get points of intersection, we solve 

3 − 𝑥 = 𝑥2 − 9  ⟹  (𝑥 + 4)(𝑥 − 3) = 0.  Hence, 𝑥 = −4, 3. 

Thus,  𝐴 = ∫ [(3 − 𝑥) − (𝑥2 − 9)]𝑑𝑥
3

−4
=

343

6
   

 

Example: Find the area of the region bounded by the graphs of 𝑦 = cos 𝑥, 𝑦 = 𝑥2 + 2 for 0 ≤

𝑥 ≤ 2. 

𝐴 = ∫ [𝑦𝑡𝑜𝑝 − 𝑦𝑏𝑜𝑡𝑡𝑜𝑚]𝑑𝑥
2

0
= ∫ [(𝑥2 + 2) − cos 𝑥]𝑑𝑥

2

0
  

             =
20

3
− sin 2 

 

𝐴 

𝑎 𝑏 

𝑦 = 𝑓(𝑥) 𝑦 

× 
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Note: Sometimes, the upper and lower boundary is not defined by a single rule as in the 

following example: 

Example: Find the area bounded by the graphs of 𝑦 = 𝑥2 and 

𝑦 = 2 − 𝑥2 for 0 ≤ 𝑥 ≤ 2. 

The point of intersection is, 𝑥2 = 2 − 𝑥2 or 𝑥 = ±1 

Thus,  

 𝐴 = ∫ [(2 − 𝑥2) − 𝑥2]𝑑𝑥
1

0
+ ∫ [𝑥2 − (2 − 𝑥2)]𝑑𝑥

2

1
= 4   

 

Note: Some regions are best treated by regarding 𝒙 as a function of 𝒚. If a region is bounded by 

curves with equations 

𝑥 = 𝑓(𝑦),    𝑥 = 𝑔(𝑦),   𝑦 = 𝑐  and 𝑦 = 𝑑 

where  

  𝑓(𝑦) ≥ 𝑔 ≥ (𝑦)   on    𝑐 ≤ 𝑦 ≤ 𝑑 

Then this area is given by; 

  𝐴 = ∫ [𝑓(𝑦) − 𝑔(𝑦)]𝑑𝑦
𝑑

𝑐
   

 

 

 

 

 

Example: Find the area enclosed by the line 𝑦 = 𝑥 − 1 and the parabola  𝑦2 = 2𝑥 + 6. 

To get the intersection, we have; 

𝑥 = 𝑦 + 1   and   𝑥 =
𝑦2

2
− 3 

i.e, 𝑦2 − 2𝑦 − 8 = 0 or 𝑦 = −2, 4. 

Thus, 

 𝐴 = ∫ [𝑥𝑟𝑖𝑔ℎ𝑡 − 𝑥𝑙𝑒𝑓𝑡]𝑑𝑦
4

−2
 

    = ∫ [(𝑦 + 1) − (
𝑦2

2
− 3)] 𝑑𝑦

4

−2
= 18 

 

 

 

Example: Find the area of the region in the 1st quadrant that is bounded above by 𝑦 = √𝑥 and 

below by the 𝒙 − 𝒂𝒙𝒊𝒔 and the line 𝒚 = 𝒙 − 𝟐.   

The intersection points are: 
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𝑥 = 𝑦2   and  𝑥 = 𝑦 + 2 

i.e.,  

𝑦2 − 𝑦 − 2 = 0   or  𝑦 = −1, 2 

Thus, 

𝐴 = ∫[(𝑦 + 2) − 𝑦2]𝑑𝑦

2

0

=
10

3
 

 

Example: Find the area of the region bounded by the curves 𝑦 = sin 𝑥 , 𝑦 = cos 𝑥, 𝑥 = 0 and 

𝑥 =
𝜋

2
. 

The intersection points are: 

sin 𝑥 = cos 𝑥 , 0 ≤ 𝑥 ≤
𝜋

2
   

Thus, 

tan 𝑥 = 1  or 𝑥 =
𝜋

4
 

Observe that cos 𝑥 ≥ sin 𝑥  when 0 ≤ 𝑥 ≤
𝜋

4
, 

but   sin 𝑥 ≥ cos 𝑥  when 
𝜋

4
≤ 𝑥 ≤

𝜋

2
 

Therefore the required area is: 

𝐴 = 𝐴1 + 𝐴2 

𝐴1 = ∫(cos 𝑥 − sin 𝑥)𝑑𝑥 =
1

√2
− 1

𝜋
4

0

 

and 

𝐴2 = ∫ (sin 𝑥 − cos 𝑥)𝑑𝑥 = −1 +
2

√2

𝜋
2

𝜋
4

 

Thus, 

𝐴 = 𝐴1 + 𝐴2 = 2√2 − 2 

 

Exercises 

Sketch and find the area bounded by the graphs: 

1. 𝑦 = 4 − 𝑥2, 𝑦 = −𝑥 + 2 

2. 𝑦 = 𝑒𝑥, 𝑦 = 2𝑒−𝑥 + 1, 𝑥 = 0 
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Applications of The Definite Integral - The volume of a solid of revolution 

  

 If we rotate a plane figure about a straight line (called the axis) through a complete 

revolution or 360°, it sweeps out a three dimensional (3D) region. The shape of the 3D region 

depends on the shape of the 2D region. The solids obtained by this process are called solids of 

revolution. The volume of such a solid obtained by rotation is the volume of a solid of 

revolution. 

 If a rectangle is rotated through 

one complete turn about its length, 

the solid of revolution will be a 

cylinder. We can visualize a cylinder 

as the shape swept out by the 

rectangle as it rotates a full turn of 

360° or one complete revolution or 

through 2𝜋 radians. 

 Similarly, if a triangle is rotated through one complete revolution about its vertical height, a 

cone is formed. 
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Rotation of regions on the Cartesian Plane 

 We can form solids of revolution by the rotation of regions about the vertical or horizontal 

axes on the Cartesian Plane. If the plane region has a definite shape, then the solid will have a 

definite shape as well. 

 In the computation of the volume of a solid shape, as long as the rotational solid resulting 

from your graph has no hollow space in it, we can use the disk method which we shall however 

restrict ourselves in our discussion. 

 

The Disk Method 

 To find the volume of a solid of revolution with the disk method, we use one of the 

following: 

 Horizontal Axis of Revolution  

Volume, 𝑉 = 𝜋 ∫ [𝑅(𝑥)]2𝑑𝑥
𝑏

𝑎
 

 Vertical Axis of Revolution  

Volume, 𝑉 = 𝜋 ∫ [𝑅(𝑦)]2𝑑𝑦
𝑑

𝑐
 

 

 

Example: Let 𝑅 be the region bounded by the curve  𝑦 = (𝑥 + 1)2 , the 𝑥 − axis, and the lines 

𝑥 = 0 and 𝑥 = 2. Find the volume of the solid of revolution obtained by revolving 𝑅 about the 

𝑥 −  axis. 

Volume, 𝑉 = 𝜋 ∫ [(𝑥 + 1)2]2𝑑𝑥
2

0
= 𝜋 ∫ (𝑥 + 4)2𝑑𝑥

2

0
=

242𝜋

5
   

 

 

 

Note: Revolving about a line that is not a coordinate axis. 

Example: Find the volume of the solid formed by revolving the region bounded by 𝑓(𝑥) = 2 −

𝑥2 and 𝑔(𝑥) = 1 about the line  𝑦 =  1. 

Solve 2 − 𝑥2 = 1 to determine that the limits of integration are 

±1, and 

𝑅(𝑥) = (2 − 𝑥2) − 1 = 1 − 𝑥2 

Thus, the volume is given by, 

 𝑉 = 𝜋 ∫ (1 − 𝑥2)2𝑑𝑥 =
16𝜋

5

1

−1
   

 

Example: Find the volume of the solid generated by revolving the region between the parabola 

𝑥 = 𝑦2 + 1 and the line 𝑥 = 3 about the line. 
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𝑅(𝑦) = 3 − (𝑦2 + 1) = 2 − 𝑦2 

𝑉 = 𝜋 ∫ (2 − 𝑦2)2𝑑𝑦 =
64√2 𝜋

15

√2

−√2
   

 

   

 

 

Line and Multiple Integrals 

 We already know how to perform integrals like 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

                                                                            

This integral of a single variable is the simplest example of a ‘line integral’. A line integral is just 

an integral of a function along a path or curve – which we already discussed under the 

applications of integration in our earlier lecture. In this case, the curve is a straight line – a 

segment of the 𝑥-axis that starts at 𝑥 = 𝑎 and ends at 𝑥 = 𝑏. Just so we’re clear on notation, I’ll 

write the indefinite integral of 𝑓(𝑥) with respect to 𝑥 as 

∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝑐 

where 𝑐 is a constant, and the definite integral of 𝑓(𝑥) from 𝑥 = 𝑎 to 𝑥 = 𝑏 as 

∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥)|
𝑏

𝑎

𝑏

𝑎

= 𝐹(𝑏) − 𝐹(𝑎) 

 

Multiple (Double) Integrals 

 The double integral is the analogue of the single integral and it shows the volume 𝑉 

bounded by the plane region 𝐷 and the surface, 𝑧 = 𝑓(𝑥, 𝑦), and it corresponds to the double 

integral 

𝑉 = ∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐷

 

Here, instead of closed intervals [𝑎, 𝑏] in the line, we deal with closed regions 𝐷 in the plane. 

 Now let 𝑓(𝑥, 𝑦) be a single valued and bounded function of two 

independent variables 𝑥 and 𝑦 defined in a closed region 𝐴 in 𝑥𝑦-

plane. Let 𝐴 be divided into 𝑛 elementary areas, 𝛿𝐴1, 𝛿𝐴2, … , 𝛿𝐴𝑛; 

and let (𝑥𝑟 , 𝑦𝑟) be any point inside the 𝑟th elementary area 𝛿𝐴𝑟 . 

 Consider the sum 
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𝑓(𝑥1, 𝑦1)𝛿𝐴1 + 𝑓(𝑥2, 𝑦2)𝛿𝐴2 + ⋯ + 𝑓(𝑥𝑛, 𝑦𝑛)𝛿𝐴𝑛 = ∑ 𝑓(𝑥𝑟 , 𝑦𝑟)𝛿𝐴𝑟

𝑛

𝑟=1

 

Then the limit of the sum, if it exists, as 𝑛 → ∞ and each sub-elementary area approaches to 

zero, is termed as a double integral of 𝑓(𝑥, 𝑦) over the region 𝐴, and expressed as 

∬ 𝑓(𝑥, 𝑦)𝑑𝐴

𝐴

 

Thus, 

∬ 𝑓(𝑥, 𝑦)𝑑𝐴

𝐴

= lim
𝑛→∞

𝛿𝐴𝑟→0

∑ 𝑓(𝑥𝑟 , 𝑦𝑟)𝛿𝐴𝑟

𝑛

𝑟=1

 

 

 

Evaluation of Double Integral 

 Evaluation of double integral  

∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑅

 

can be discussed under following three possible cases: 

 

Case I: When the region 𝑅 is bounded by two continuous curves 𝑦 = 𝜓 (𝑥) and 𝑦 = 𝜑(𝑥) and 

the two lines (ordinates)  𝑥 = 𝑎 and 𝑥 = 𝑏. 

 In such a case, integration is first performed with respect to 𝑦 keeping 𝑥 as a constant and 

then the resulting integral is integrated within the limits 𝑥 = 𝑎 and 𝑥 = 𝑏. 

 Mathematically expressed as: 

∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑅

= ∫ (∫ 𝑓(𝑥, 𝑦)𝑑𝑦
𝑦=𝜓(𝑥)

𝑦=𝜙(𝑥)

) 𝑑𝑥

𝑥=𝑏

𝑥=𝑎

 

 Geometrically, the process is shown in Fig. 2, where 

integration is carried out from inner rectangle (i.e., along the 

one edge of the ‘vertical strip PQ’ from P to Q) to the outer 

rectangle. 

 

Case 2: When the region 𝑅 is bounded by two continuous curves 𝑥 = 𝜑(𝑦) and 𝑥 = 𝜓(𝑦) and 

the two lines (abscissa) 𝑦 = 𝑎 and 𝑦 = 𝑏. 

 In such a case, integration is first performed with respect to 𝑥 keeping 𝑦 as a constant and 

then the resulting integral is integrated between the two limits 𝑦 = 𝑎 and 𝑦 = 𝑏. 

 Mathematically expressed as: 
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∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑅

= ∫ (∫ 𝑓(𝑥, 𝑦)𝑑𝑥
𝑥=𝜓(𝑦)

𝑥=𝜙(𝑦)

) 𝑑𝑦

𝑦=𝑏

𝑦=𝑎

 

 Geometrically, the process is shown in Fig. 3, where  

integration is carried out from inner rectangle (i.e., along 

the  

one edge of the horizontal strip PQ from P to Q) to the 

outer  

rectangle. 

Case 3: When both pairs of limits are constants, the 

region of integration is the rectangle ABCD (say). In this 

case, it is immaterial whether 𝑓(𝑥, 𝑦) is integrated first 

with respect to 𝑥 or 𝑦, the result is unaltered in both the 

cases (Fig. 4). 

 

Observations: While calculating double integral, in either 

case, we proceed outwards from the innermost 

integration and this concept can be generalized to repeated integrals with three or more variable 

also. 
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Taylor Series and Maclaurin Series 

 Let’s start our discussion with a function that can be represented by a power series. A series 

𝑓(𝑥) = ∑ 𝑐𝑛𝑥𝑛

∞

𝑛=0

 

is called a power series . The domain of the power series function is the set of all 𝑥 values for 

which the series converges. 

 Here is a simple example to demonstrate that in the typical power series you will have 

convergence for some values of 𝑥 and divergence for others. 

∑ 𝑥𝑛

∞

𝑛=0

 

This series is quite clearly a geometric series, and converges for |𝑥| < 1. 

 A basic variant of the power series is the power series centered at 𝑥 = 𝑎: 

𝑓(𝑥) = ∑ 𝑐𝑛(𝑥 − 𝑎)𝑛

∞

𝑛=0

= 𝑐0 + 𝑐1(𝑥 − 𝑎) + 𝑐2(𝑥 − 𝑎)2 + 𝑐2(𝑥 − 𝑎)3 + ⋯ 

We first notice that 

𝑓(𝑎) = 𝑐0 

We can find the derivative of 𝑓(𝑥) by differentiating the individual terms of the power series, 

𝑓′(𝑥) = ∑ 𝑛𝑐𝑛(𝑥 − 𝑎)𝑛−1

∞

𝑛=1

 

Observe that the derivative is also a power series, so we can proceed to compute all of its higher 

derivatives. 

𝑓′′(𝑥) = ∑ 𝑛(𝑛 − 1)𝑐𝑛(𝑥 − 𝑎)𝑛−2

∞

𝑛=2

 

𝑓′′′(𝑥) = ∑ 𝑛(𝑛 − 1)(𝑛 − 2)𝑐𝑛(𝑥 − 𝑎)𝑛−3

∞

𝑛=3

 

.  .  .     

𝑓(𝑘)(𝑥) = ∑ 𝑛(𝑛 − 1)(𝑛 − 2) … (𝑛 − 𝑘 + 1)𝑐𝑛(𝑥 − 𝑎)𝑛−𝑘

∞

𝑛=3

 

When we evaluate the derivatives at 𝑎, we get the constant term in each power series, 

𝑓′(𝑎) = 1. 𝑐1;     𝑓′′(𝑎) = 2.1. 𝑐2;    𝑓′′′(𝑎) = 3.2.1. 𝑐3;   …   𝑓(𝑘)(𝑎) = 𝑘!. 𝑐𝑘 

Solving the equation for the 𝑘-th coefficient 𝑐𝑘, we get 

𝑐𝑘 =
𝑓(𝑘)(𝑎)

𝑘!
 

We have proved the following theorem. 

Theorem: If 𝑓 has a power series expansion at 𝑎 with radius of convergence 𝑅 > 0, that  is 
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𝑓(𝑥) = ∑ 𝑐𝑛𝑥𝑛

∞

𝑛=0

  for all   |𝑥 − 𝑎| < 𝑅, 

then its coefficients are given by the formula, 

𝑐𝑛 =
𝑓(𝑛)(𝑎)

𝑛!
 

Remark: Substituting this formula back into the series, we see that if 𝑓 has a power series 

expansion at 𝑎, then it must be of the form: 

𝑓(𝑥) = ∑
𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛

∞

𝑛=0

 

 = 𝑓(𝑎) +
𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 + ⋯ +

𝑓𝑛(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 + 𝑅𝑛(𝑥) 

Where 𝑅𝑛(𝑥) is the remainder or error, and  

𝑅𝑛(𝑥) =
𝑓(𝑛+1)(𝑐)

(𝑛 + 1)!
(𝑥 − 𝑎)𝑛+1 

 

 

Definition: Let 𝑓 be a function with all derivatives in the open interval (𝑎 − 𝑟, 𝑎 + 𝑟), then the  

series 

∑
𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛

∞

𝑛=0

 

is called the Taylor series of the function 𝑓 at 𝑎 on (𝑎 − 𝑟, 𝑎 + 𝑟) if and only if  

lim
𝑛→∞

𝑅𝑛(𝑥) = 0, 

with 

𝑅𝑛(𝑥) =
𝑓(𝑛+1)(𝑐)

(𝑛 + 1)!
(𝑥 − 𝑎)𝑛+1,   𝑐 ∈ (𝑎 − 𝑟, 𝑎 + 𝑟)               

When 𝑎 = 0, the series becomes 

∑
𝑓(𝑛)(0)

𝑛!
𝑥𝑛

∞

𝑛=0

 

and is given the special name Maclaurin series. 

 

Example: Let us look at the power series expansion of the exponential function 𝑓(𝑥) = 𝑒𝑥 

centred at 0, 

𝑓(𝑥) = 𝑒𝑥 = 𝑓(0) +
𝑓′(0)

1!
𝑥 +

𝑓′′(0)

2!
𝑥2 +

𝑓′′′(0)

3!
𝑥3 + ⋯ +

𝑓𝑛(0)

𝑛!
𝑥𝑛 

= 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯ +

𝑥𝑛

𝑛!
= ∑

𝑥𝑛

𝑛!

∞

𝑛=0
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which is a power series expansion of the exponential function 𝑓(𝑥) = 𝑒𝑥. The power series is 

centered at 0. The derivatives 𝑓𝑘(𝑥) = 𝑒𝑥, so 𝑓𝑘(0) = 𝑒0 = 1. So the Taylor series of the 

function 𝑓 at 0, or the Maclaurin series of 𝑓, is 

∑
𝑥𝑛

𝑛!

∞

𝑛=0

 

which agrees with the power series definition of the exponential function. 

Definition: If 𝑓(𝑥) is the sum of its Taylor series expansion, it is the limit of the sequence of 

partial sums, 

𝑇𝑛(𝑥) = ∑
𝑓𝑘(𝑎)

𝑘!
(𝑥 − 𝑎)𝑘

𝑛

𝑘=0

 

We call the 𝑛-th partial sum the 𝑛-th-degree Taylor polynomial of 𝑓 at 𝑎. 

 One important application of Taylor series is to approximate a function by its Taylor 

polynomials. This is very useful in physics and engineering, where people only need a good 

approximation for most scenarios, and polynomials are usually much easier to deal with than a 

transcendental function. The following theorem justifies the use of Taylor polynomials for 

function approximation. 

Theorem (Taylor’s Theorem): Let 𝑛 > 1 be an integer, and let 𝑎 ∈ ℝ be a point. If 𝑓(𝑥) is a 

function that is 𝑛 times differentiable at the point 𝑎, then there exists a function ℎ𝑛(𝑥) such that, 

𝑓(𝑥) = 𝑇𝑛(𝑥) + ℎ𝑛(𝑥)(𝑥 − 𝑎)𝑛 

where  

lim
𝑥→𝑎

ℎ𝑛(𝑥) = 0 

The term 

𝑅𝑛(𝑥) = 𝑓(𝑥) − 𝑇𝑛(𝑥) = ℎ𝑛(𝑥)(𝑥 − 𝑎)𝑛 

is called the Peano form of the remainder. 

 Sometimes we would like a better estimate on the remainder term, so that we could have a 

better understanding of how good the Taylor polynomials approximate the original functions. 

However, we can only do this under stronger regularity assumptions on 𝑓(𝑥). 

Theorem (Lagrange Form of the Remainder). Let 𝑛 ≥ 1 be an integer, and let 𝑎 ∈ ℝ be a 

point. If 𝑓(𝑥) is a function that is 𝑛 + 1 times differentiable on an open interval 𝐼 containing 𝑎, 

then for all 𝑥 ∈ 𝐼, there exists a number 𝑧 strictly between 𝑎 and 𝑥 such that, 

𝑅𝑛(𝑥) =
𝑓(𝑛+1)(𝑧)

(𝑛 + 1)!
(𝑥 − 𝑎)𝑛+1 

This is the Lagrange form of the remainder. 

Example: Find the Maclaurin series for 𝑓(𝑥) = sin 𝑥, and show that its sum equals sin 𝑥. 

First, we need to find the derivatives of 𝑓(𝑥) at 0: 



Dr. E.O. Ohwadua Mathematical Methods I  30 

 

𝑓(𝑥) = sin 𝑥 ,                             𝑓(0) = 0 

𝑓′(𝑥) = cos 𝑥,                         𝑓′(0) = 1 

𝑓′′(𝑥) = − sin 𝑥,                    𝑓′′(0) = 0 

𝑓′′′(𝑥) = − cos 𝑥,                 𝑓′′′(0) = −1 

𝑓(4)(𝑥) = sin 𝑥,                 𝑓(4)(0) = 0 

                                                 …                                      … 

The derivatives repeat in a 4-cycle, so we can write the Maclaurin series as, 

𝑓(0) +
𝑓′(0)

1!
𝑥 +

𝑓′′(0)

2!
𝑥2 +

𝑓′′′(0)

3!
𝑥3 +

𝑓(4)(0)

4!
𝑥4 + ⋯ 

= 𝑥 −
𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
+ ⋯ = ∑

(−1)𝑛

(2𝑛 + 1)!
𝑥2𝑛+1

∞

𝑛=0

 

To show that the sum of the Maclaurin series equals to the function 𝑓(𝑥) = sin 𝑥, we consider 

the 𝑛-th remainder term in Lagrange form: 

𝑅𝑛(𝑥) =
𝑓(𝑛+1)(𝑧)

(𝑛 + 1)!
𝑥𝑛+1 

where 𝑧 is a number strictly between 0 and 𝑥. Notice that 𝑓(𝑛+1)(𝑧) is a sine function or a cosine 

function, so |𝑓(𝑛+1)(𝑧)| ≤ 1. Then we have, 

−
𝑥𝑛+1

(𝑛 + 1)!
≤ 𝑅𝑛(𝑥) ≤

𝑥𝑛+1

(𝑛 + 1)!
 

However, we know that, 

lim
𝑛→∞

𝑥𝑛+1

(𝑛 + 1)!
= 0 

For all 𝑥 ∈ ℝ, so that, 

lim
𝑛→∞

𝑅𝑛(𝑥) = 0 

for all 𝑥 ∈ ℝ. But since 𝑅𝑛(𝑥) = 𝑓(𝑥) − 𝑇𝑛(𝑥), this implies that the Taylor polynomials 

converges to 𝑓(𝑥) for all 𝑥 ∈ ℝ, i.e., the sum of the Maclaurin series equals 𝑓(𝑥) = sin 𝑥. 
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Remark: The Taylor series/Maclaurin series of a infinitely differentiable function does not 

necessarily equal to the original function. A proof is required to show that they are equal (or 

not equal) for a function under consideration. We used the Lagrange form of the remainder 

to prove it for sin 𝑥 and used the differential equation method to prove it for 𝑒𝑥. 

We collect the following table of important Maclaurin series for reference: 
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Exercises: 

1. Write the Taylor series for 𝑓(𝑥) =
1

𝑥
 centered at 𝑎 = 1. 

2. Find the Taylor series for 𝑓(𝑥) = sin 𝑥  in (𝑥 − 𝜋/4). 

3. Compute and write a Maclaurin series (5 terms) for 𝑓(𝑥) =
1

1−sin 𝑥
. 

4. Find the Taylor series for the function 𝑥4 + 𝑥 − 2 centered at 𝑎 = 1. 

5. Find the first 4 terms in the Taylor series for (𝑥 − 1)𝑒𝑥 near 𝑥 = 1. 

6. Find the first 3 terms in the Maclaurin series for (a) sin 𝑥2,  (b) 
𝑥

√1−𝑥2
, (c) 𝑥𝑒−𝑥, (d) 

𝑥

1+𝑥2. 

7. Using 
1

1+𝑥
≡ 1 − 𝑥 + 𝑥2 − 𝑥3 + ⋯, find the Maclaurin series for the function 

1

2+𝑥
. 
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Partial Differentiation 

Introduction 

In the first part of this course, you have met the idea of a derivative. To recap using first 

principle, recall that if you have a function, 𝑓 (say), then the slope of the curve of 𝑓 at a point 𝑥 

is said to be the number, 

𝑓′(𝑥) = lim
∆𝑥→0

𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
 

provided that this limit exists. If this limit does exist for every value of 𝑥, then the function 𝑓 is 

said to be differentiable, or smooth. 

 If 𝑓 is given by a power series in 𝑥, let’s say 

𝑓(𝑥) = 𝑎0 + 𝑓1𝑥 + 𝑓2𝑥2 + ⋯ 

then 𝑓 is differentiable and its derivative at 𝑥 = 0 is equal to 𝑓1. This is easy to see and we know 

from Taylor’s theorem that a partial converse to this result exists. Namely, if a function is 

smooth and we can differentiate it several times, then we can approximate the function locally in 

terms of a polynomial. This idea is very important during this part of the course. 

 Let us introduce some terminology that is useful when dealing with derivatives. 

Definition: (The absolute value or modulus function) The absolute value function 𝑥 ↦ |𝑥|, 

which is read “𝑥 maps to mod 𝑥”, is given by 

|𝑥| = {
𝑥;   𝑥 ≥ 0
𝑥;   𝑥 ≤ 0

 

or |𝑥| = +√𝑥2. 

Definition: (Big O notation) We use the object (∆𝑥 = ℎ) 

𝑂(ℎ2) 

to mean any function of ℎ that contains terms which are as small as ℎ2, and possibly smaller, 

when ℎ is itself small. For instance, 2ℎ2 + ℎ100 is 𝑂(ℎ2), as is 99ℎ2 − ℎ10; it’s just a shorthand 

where we don’t care too much what the higher terms are because they’re very small if ℎ is small. 

In fact, a function 𝑓(ℎ) is said to be 𝑂(ℎ) as ℎ → 0 precisely when the limit, 

lim
ℎ→0

𝑓(ℎ)

ℎ
 

exists. 

 Now, we can think of the derivative as a way of approximating the function 𝑓 using a 

linear function. For instance, one can also define the derivative of 𝑓(𝑥) to be the function 𝑓′(𝑥) 

such that the statement, 

|𝑓(𝑥 + ℎ) − 𝑓(𝑥) − ℎ𝑓′(𝑥)| = 𝑂(ℎ2) 

holds as ℎ → 0 for all values of 𝑥. 

 This simply means that if ℎ is small, then for a fixed 𝑥, the function 

ℎ ↦ 𝑓(𝑥 + ℎ) 

looks (locally at least) a lot like the linear function of ℎ, 
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ℎ ⟼ 𝑓(𝑥) + ℎ𝑓′(𝑥) 

 To clarify these ideas let us consider a familiar example. 

Example: Let us consider the function 𝑓(𝑥) = 𝑥2. Now, we know that 𝑓′(𝑥) = 2𝑥. But we also 

have, 

|𝑓(𝑥 + ℎ) − 𝑓(𝑥) − ℎ𝑓′(𝑥)| = |(𝑥 + ℎ)2 − 𝑥2 − 2𝑥ℎ| = ℎ2 

Let us consider the function 𝑓(𝑥) = 𝑒𝑥. Now, we know that 𝑓′(𝑥) = 𝑒𝑥, but for a fixed 𝑥 we 

also have, 

|𝑓(𝑥 + ℎ) − 𝑓(𝑥) − ℎ𝑓′(𝑥)| = |𝑒𝑥+ℎ − 𝑒𝑥 − ℎ𝑒𝑥| = |𝑒𝑥(𝑒ℎ − 1 − ℎ)| 

Since 

𝑒ℎ = 1 + ℎ +
1

2
ℎ2 +

1

6
ℎ3 + ⋯ 

we can justifiably write  

                               |𝑒𝑥(𝑒ℎ − 1 − ℎ)| = 𝑂(ℎ2) as ℎ → 0 with 𝑥 fixed. 

 So, to sum up this preamble to this part of the course, a derivative of a function 𝑓(𝑥) is 

computed using the familiar idea of a limiting process or first principle which provides a linear 

approximation to 𝑓(𝑥). In fact, one could say that the function (of ℎ); 𝐿(ℎ) = 𝑓(𝑥) + ℎ𝑓′(𝑥) is 

the best linear approximation to the function 𝑓(𝑥) at 𝑥. 

 We could also define the quadratic function of ℎ, 

𝑄(ℎ) = 𝑓(𝑥) + 𝑓′(𝑥)ℎ +
1

2
𝑓′′(𝑥)ℎ2 

and then we would find that |𝑓(𝑥) − 𝑄(𝑥)| = 𝑂(ℎ3). For small ℎ, something that is 𝑂(ℎ3) is 

smaller in size than something that is 𝑂(ℎ2), and this is the mathematical way in which one 

writes that 𝑄 is a better approximation of 𝑓 near 𝑥 than 𝐿 is. 

Example: Find the linear and quadratic approximations to the function 𝑔(𝑡)  =  𝑐𝑜𝑠(𝑡) at the 

point, 𝑡 = 0. 

In this case,  

𝑔(0) = 1,  𝑔′(0) = 0, and 𝑔′′(0) = −1 

From where, 

𝐿(ℎ) = 𝑔(0) + ℎ𝑔′(0) = 1  and 𝑄(ℎ) = 𝑔(0) + 𝑔′(0)ℎ +
1

2
𝑔′′(0)ℎ2 = 1 −

1

2
ℎ2 

 

Partial Derivatives 

 Often functions depend on more than one variable. For instance, the volume of a box is 

given by 

𝑉(𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧 

where 𝑥, 𝑦 and 𝑧 are the lengths of the sides of the box. Since calculus is so useful when studying 

problems in one variable, such as when maximizing, curve sketching, or deriving differential 

equations in physics, we would like to see if there is a calculus for functions which depend on 

two variables. 
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 We shall write this as;  

(𝑥, 𝑦) ⟼ 𝑓(𝑥, 𝑦) 

or just 𝑓(𝑥, 𝑦) for short. The symbol ⟼ is read “maps to” and indicates that 𝑓 is a black box, 

with (𝑥, 𝑦) as input, and some value 𝑓(𝑥, 𝑦) as output. 

 Now, a function such as 

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦3 

can have derivatives too. For instance, we can forget about y for a second and just think about 

the limit 

lim
∆𝑥→0

𝑓(𝑥 + ∆𝑥, 𝑦) − 𝑓(𝑥, 𝑦)

∆𝑥
 

Or we could try to evaluate the limit 

lim
∆𝑦→0

𝑓(𝑥, 𝑦 + ∆𝑦) − 𝑓(𝑥, 𝑦)

∆𝑦
 

We can perform both of these operations, and you should verify that the first one gives us 2𝑥 and 

the second, 3𝑦2. 

 But the first answer is exactly what you get when you take 𝑓, hold 𝑦 as a constant, and just 

differentiate the function, thinking of it as a function only of 𝑥. Indeed, we could write 

𝑑𝑦

𝑑𝑥
(𝑥, 𝑦) = lim

∆𝑥→0

𝑓(𝑥 + ∆𝑥, 𝑦) − 𝑓(𝑥, 𝑦)

∆𝑥
 

Indeed we shall perform this process to differentiate functions of two variables, but we shall use 

a slightly different notation instead to remind us of the fact that there are several variables in 

our function. We actually use a ‘curly 𝑑’ and write 

𝜕𝑓

𝜕𝑥
(𝑥, 𝑦) = lim

∆𝑥→0

𝑓(𝑥 + ∆𝑥, 𝑦) − 𝑓(𝑥, 𝑦)

∆𝑥
 

and also, 

𝜕𝑓

𝜕𝑦
(𝑥, 𝑦) = lim

∆𝑦→0

𝑓(𝑥, 𝑦 + ∆𝑦) − 𝑓(𝑥, 𝑦)

∆𝑦
 

We do, however, read the symbol ‘𝜕’ as a ‘d’. A more compact notation is also used for partial 

derivative and the symbols 

𝑓𝑥(𝑥, 𝑦)  and  𝑓𝑦(𝑥, 𝑦) 

are used in place of 
𝜕𝑓

𝜕𝑥
 and 

𝜕𝑓

𝜕𝑦
. 

Example: Given 𝑓(𝑥, 𝑦)  =  𝑥𝑦, find 𝑓𝑥(𝑥, 𝑦) and 𝑓𝑦(𝑥, 𝑦). 

Using the definition, we find 

𝑓𝑥(𝑥, 𝑦) = lim
ℎ→0

(𝑥 + ℎ)𝑦 − 𝑥𝑦

ℎ
= 𝑦 

and  

𝑓𝑦(𝑥, 𝑦) = lim
𝑘→0

𝑥(𝑦 + 𝑘) − 𝑥𝑦

𝑘
= 𝑥 
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Example: Find the partial derivative of the function, 𝑓(𝑥, 𝑦) = 3𝑥2𝑦 + 5𝑥𝑦3 for 𝑓𝑥 and 𝑓𝑦. 

𝑓𝑥 =
𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
=

𝜕

𝜕𝑥
(3𝑥2𝑦 + 5𝑥𝑦3) = 6𝑥𝑦 + 5𝑦3 

and 

𝑓𝑦 =
𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
=

𝜕

𝜕𝑦
(3𝑥2𝑦 + 5𝑥𝑦3) = 3𝑥2 + 15𝑥𝑦2 

 

The more general case can be illustrated by considering a function 𝑓(𝑥, 𝑦, 𝑧) of three variables 

𝑥, 𝑦 and 𝑧. If 𝑦 and 𝑧 are held constant and only 𝑥 is allowed to vary, the partial derivative of 𝑓 

with respect to 𝑥 is denoted by 
𝜕𝑓

𝜕𝑥
 and defined by 

𝜕𝑓

𝜕𝑥
= lim

∆𝑥→0

𝑓(𝑥 + ∆𝑥, 𝑦, 𝑧) − 𝑓(𝑥, 𝑦, 𝑧)

∆𝑥
 

and 

𝜕𝑓

𝜕𝑦
= lim

∆𝑦→0

𝑓(𝑥, 𝑦 + ∆𝑦, 𝑧) − 𝑓(𝑥, 𝑦, 𝑧)

∆𝑦
 

also 

𝜕𝑓

𝜕𝑧
= lim

∆𝑧→0

𝑓(𝑥, 𝑦, 𝑧 + ∆𝑧) − 𝑓(𝑥, 𝑦, 𝑧)

∆𝑧
 

Example: Let 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2𝑦𝑧 + 𝑦𝑒𝑧, then 
𝜕𝑓

𝜕𝑥
= 2𝑥𝑦𝑧,   

𝜕𝑓

𝜕𝑦
= 𝑥2𝑧 + 𝑒𝑧,  and  

𝜕𝑓

𝜕𝑧
= 𝑥2𝑦 + 𝑦𝑒𝑧 

 Given the fact that differentiation of a function of one variable provides a way of 

constructing linear and quadratic approximations to a function; does partial differentiation 

provide analogies of such approximations for functions of more than one variable? The answer to 

this question will be affirmative, but we must first examine the notation of higher-derivatives for 

functions of more than one variable. 

 

Higher and Mixed Partial Derivatives 

 Given that we can differentiate a function 𝑓(𝑥, 𝑦) with respect to one of the variables, 𝑥 or 

𝑦, to form a partial derivative, can we evaluate derivatives of derivatives, that is, how do we 

obtain higher derivatives? We shall write the ‘second partial derivative of 𝑓 with respect to 𝑥’ as 

𝜕2𝑓

𝜕𝑥2
(𝑥, 𝑦) = 𝑓𝑥𝑥(𝑥, 𝑦) = lim

∆𝑥→0

𝑓𝑥(𝑥 + ∆𝑥, 𝑦) − 𝑓𝑥(𝑥, 𝑦)

∆𝑥
 

and then do the same for 𝑦: 

𝜕2𝑓

𝜕𝑦2
(𝑥, 𝑦) = 𝑓𝑦𝑦(𝑥, 𝑦) = lim

∆𝑦→0

𝑓𝑦(𝑥, 𝑦 + ∆𝑦) − 𝑓𝑦(𝑥, 𝑦)

∆𝑦
 

We also have the ‘mixed’ second partial derivatives 
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𝜕2𝑓

𝜕𝑥𝜕𝑦
(𝑥, 𝑦) = 𝑓𝑥𝑦(𝑥, 𝑦) = lim

∆𝑥→0

𝑓𝑦(𝑥 + ∆𝑥, 𝑦) − 𝑓𝑦(𝑥, 𝑦)

∆𝑥
 

and  

𝜕2𝑓

𝜕𝑦𝜕𝑥
(𝑥, 𝑦) = 𝑓𝑦𝑥(𝑥, 𝑦) = lim

∆𝑦→0

𝑓𝑥(𝑥, 𝑦 + ∆𝑦) − 𝑓𝑥(𝑥, 𝑦)

∆𝑦
 

You may think that the order in which we perform each subsequent differentiation when finding 

partial derivatives depends on the order in which each is performed. Put another way: is 𝑓𝑥𝑦 

different from 𝑓𝑦𝑥? 

 We shall label the answer to this question as a theorem. 

Theorem: For smooth function 𝑓(𝑥, 𝑦) the mixed partials 𝑓𝑥𝑦 and 𝑓𝑦𝑥 are the same. 

 Notice that a natural corollary of this theorem is that the higher derivative 𝑓𝑥𝑥𝑦𝑥𝑥𝑦𝑥𝑦𝑥 is the 

same as 𝑓𝑥𝑥𝑥𝑥𝑥𝑥𝑦𝑦𝑦 as the order of differentiation is of no importance! 

Example: Consider the function 𝑓(𝑥, 𝑦) =  𝑥2𝑦 + 𝑦𝑒𝑥, we then have the following derivatives: 

𝑓𝑥 = 2𝑥𝑦 + 𝑦𝑒𝑥,    𝑓𝑦 = 𝑥2 + 𝑒𝑥 

𝑓𝑥𝑥 = 2𝑦 + 𝑦𝑒𝑥,     𝑓𝑦𝑦 = 0,       𝑓𝑥𝑦 = 2𝑥 + 𝑒𝑥,     𝑓𝑦𝑥 = 2𝑥 + 𝑒𝑥 

𝑓𝑥𝑥𝑥 = 𝑦𝑒𝑥,       𝑓𝑥𝑥𝑦 = 2 + 𝑒𝑥,    𝑓𝑥𝑦𝑦 = 0,     𝑓𝑦𝑦𝑦 = 0 

and so on! 

 

Chain Rule 

 Suppose that we have the equation of a surface 

𝑧 = 𝑓(𝑥, 𝑦) 

and we want to obtain a calculus for a particle moving along that surface. We can then think of 

(𝑥, 𝑦) as a function of time, 𝑡, and form the height function 

𝑧(𝑡) = 𝑓(𝑥(𝑡), 𝑦(𝑡)) 

A natural question to ask is ‘what is the derivative of 𝑧 with respect to time?’. This derivative 

measures the rate at which the height is changing as time changes. We can find this expression 

by thinking about the difference 

𝑧(𝑡 + ℎ) − 𝑧(𝑡) 

which is  

𝑓(𝑥(𝑡 + ℎ), 𝑦(𝑡 + ℎ)) − 𝑓(𝑥(𝑡), 𝑦(𝑡)) 

With 𝑥 and 𝑦 smooth functions, we can write 

𝑥(𝑡 + ℎ) = 𝑥(𝑡) + 𝑥′(𝑡)ℎ + 𝑂(ℎ2) 

and 

𝑦(𝑡 + ℎ) = 𝑦(𝑡) + 𝑦′(𝑡)ℎ + 𝑂(ℎ2) 

Therefore 

𝑧′(𝑡) = lim
ℎ→0

𝑧(𝑡 + ℎ) − 𝑧(𝑡)

ℎ
=

𝜕𝑓

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑡
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Now, we can extend this idea by supposing that 𝑥 and 𝑦 are now functions of (𝑡, 𝑠), and we now 

form 

𝑧(𝑡, 𝑠) = 𝑓(𝑥(𝑡, 𝑠), 𝑦(𝑡, 𝑠)) 

We can think of 𝑠 being fixed and repeat the above process, replacing derivatives of 𝑥 and 𝑦 with 

partial derivatives. This would give us the result that 

𝜕𝑧

𝜕𝑡
= lim

ℎ→0

𝑧(𝑡 + ℎ, 𝑠) − 𝑧(𝑡, 𝑠)

ℎ
=

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑡
+

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑡
 

and, reasoning in an analogous fashion, 

𝜕𝑧

𝜕𝑠
= lim

𝑘→0

𝑧(𝑡, 𝑠 + 𝑘) − 𝑧(𝑡, 𝑠)

𝑘
=

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑠
+

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑠
 

These expressions are known as the chain rule for functions of two variables. If we recall the 

chain rule from one-dimensional calculus, that 

𝑑

𝑑𝑡
𝑓(𝑥(𝑡)) =

𝑑𝑓

𝑑𝑥

𝑑𝑥

𝑑𝑡
 

then we see that an extra term is required when we move to two dimensions. Explicitly, 

𝑑

𝑑𝑡
𝑓(𝑥(𝑡), 𝑦(𝑡)) =

𝜕𝑓

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑡
 

And again, just for clarity 

𝜕

𝑑𝑡
𝑓(𝑥(𝑡, 𝑠), 𝑦(𝑡, 𝑠)) =

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑡
+

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑡
 

 

Similarly, if 𝑥, 𝑦 and 𝑧 are all functions of a single variable 𝑡, then 𝑓 can be considered as a 

function of 𝑡 and 

𝑑𝑓

𝑑𝑡
=

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑡
+

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑡
+

𝜕𝑓

𝜕𝑧

𝜕𝑧

𝜕𝑡
 

Example: Let 𝑓(𝑥, 𝑦) = cos(𝑥𝑦) and let 𝑥(𝑡) = 2𝑡, 𝑦(𝑡) = 𝑡2; let us find 𝑑

𝑑𝑡
𝑓(𝑥(𝑡),𝑦(𝑡)) using the 

chain rule.  

Now 

𝑑

𝑑𝑡
𝑓(𝑥(𝑡), 𝑦(𝑡)) = 𝑓𝑥(𝑥(𝑡), 𝑦(𝑡))𝑥′(𝑡) + 𝑓𝑦(𝑥(𝑡), 𝑦(𝑡))𝑦′(𝑡) 

which equals 

− sin(𝑥𝑦)𝑦𝑥′(𝑡) − sin(𝑥𝑦)𝑥𝑦′(𝑡) = − sin(2𝑡3)(2𝑡2 + 4𝑡2) = − sin(2𝑡3)6𝑡2 

Also, substituting the expressions for 𝑥, 𝑦, into 𝑓, we have 

𝑑

𝑑𝑡
cos(2𝑡3) = − sin(2𝑡3)6𝑡2 

Example: Let 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2𝑦𝑧; 𝑥 = 𝑒𝑡, 𝑦 = 𝑡, and 𝑧 = 1 + 𝑡. 

Using the chain rule gives, 
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𝑑𝑓

𝑑𝑡
= (2𝑥𝑦𝑧)𝑒𝑡 + 𝑥2𝑧 + 𝑥2𝑦 = 2𝑡𝑒2𝑡(1 + 𝑡) + 𝑒2𝑡(1 + 2𝑡) 

However, using direct substitution, we have 

𝑓 = 𝑒2𝑡𝑡(1 + 𝑡) 

Differentiating, gives 

𝑑𝑓

𝑑𝑡
= 𝑒2𝑡(2𝑡 + 1) + 2𝑒2𝑡𝑡(1 + 𝑡) = 𝑒2𝑡(2𝑡 + 1) + 2𝑡𝑒2𝑡(1 + 𝑡) 

 

Lagrange Multipliers 

 Lagrange multipliers, named after Joseph Louis Lagrange, is a method for finding the 

extrema (local minima or local maxima) of a function subject to one or more (equality or 

inequality) constraints. This method reduces a problem in 𝑛 variable with 𝑘 constraints to a 

problem in 𝑛 +  𝑘 variables with no constraint.  

 The method introduces a scalar variable, the Lagrange multiplier, for each constraint and 

forms a linear combination involving the multipliers as coefficients. The Lagrange multipliers 

are also called undetermined multipliers. 

 Many well-known machine learning algorithms make use of the method of Lagrange 

multipliers. For example, the theoretical foundations of principal components analysis (PCA) are 

built using the method of Lagrange multipliers with equality constraints. Similarly, the 

optimization problem in support vector machines SVMs is also solved using this method. 

The method of Lagrange Multipliers 

 Suppose we have the following optimization problem: 

    Minimize 𝑓(𝑥) 

Subject to: 

    𝑔𝑖(𝑥) = 0,    (𝑖 = 1.2, … , 𝑛) 

The method of Lagrange multipliers first constructs a function called the Lagrange function as 

given by the following expression: 

𝐿(𝑥, 𝜆) = 𝑓(𝑥) + 𝜆1𝑔1(𝑥) + 𝜆2𝑔2(𝑥) + ⋯ + 𝜆𝑛𝑔𝑛(𝑥) 

where 𝜆 represents a vector of Lagrange multipliers, i.e., 

𝜆 = [𝜆1, 𝜆2, … , 𝜆𝑛]𝑇 

Now, to find the points of local minimum of 𝑓(𝑥) subject to the equality constraints, we find the 

stationary points of the Lagrange function 𝐿(𝑥, 𝜆), i.e., we solve the following equations: 

∇𝐿 = 0   or   ∇[𝑓(𝑥) + 𝜆(𝑔(𝑥) − 𝑐)] = 0 

Once values for 𝜆 are determined, we can go on to find extrema of the unconstrained function, 

𝐹(𝑥)  =  𝑓(𝑥)  +  𝜆(𝑔(𝑥) − 𝑐) 
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Note that the critical points of 𝐹(𝑥) are all on the curve 𝑔(𝑥)  =  𝑐 (As can be seen by setting 

∇𝐹 = 0. Therefore, the extrema of 𝐹(𝑥) are equal to the extrema of 𝑓(𝑥). 

Example: Let’s solve the following minimization problem: 

   Minimize:  𝑓(𝑥) = 𝑥2 + 𝑦2 

   Subject to : 

     𝑥 + 2𝑦 − 1 = 0 

The first step is to construct the Lagrange function: 

𝐿(𝑥, 𝑦, 𝜆) = 𝑥2 + 𝑦2 + 𝜆(𝑥 + 2𝑦 − 1) 

Which yields the following equations: 

      

𝜕𝐿

𝜕𝑥
= 0     ⟹     2𝑥 + 𝜆 = 0          (1) 

      

𝜕𝐿

𝜕𝑦
= 0     ⟹     2𝑦 + 2𝜆 = 0          (2) 

      

𝜕𝐿

𝜕𝜆
= 0     ⟹     𝑥 + 2𝑦 − 1 = 0          (3) 

Solving (1) to (3) we have, 

𝑥 =
1

5
,      𝑦 =

2

5
 

Hence, the local minimum point lies at (
1

5
,

2

5
). 

Example: Find the minimum of the following function subject to the given constraints: 

     Minimize:  𝑔(𝑥, 𝑦) = 𝑥2 + 4𝑦2 

     Subject to: 

       𝑥 + 𝑦 = 0 

       𝑥2 + 𝑦2 = 1 

Constructing the Lagrange function, we have, 

𝐿(𝑥, 𝑦, 𝜆1, 𝜆2) = 𝑥2 + 4𝑦2 + 𝜆1(𝑥 + 𝑦) + 𝜆2(𝑥2 + 𝑦2 − 1) 

Thus, we have four equations: 

𝜕𝐿

𝜕𝑥
= 0   ⟹    2𝑥 + 𝜆1 + 2𝑥𝜆2 = 0                 (1) 

     

𝜕𝐿

𝜕𝑦
= 0          ⟹    8𝑦 + 𝜆1 + 2𝑦𝜆2 = 0                 (2) 

     

𝜕𝐿

𝜕𝜆1
= 0     ⟹    𝑥 + 𝑦 = 0                 (3) 
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𝜕𝐿

𝜕𝜆2
= 0     ⟹    𝑥2 + 𝑦2 − 1 = 0                 (4) 

Solving the above system of equations, gives us two solutions for (𝑥, 𝑦), i.e., we get the two 

points: 

√2

2
, −

√2

2
    and   −

√2

2
,

√2

2
 

Remark: If you have a function to maximize, you can solve it in a similar manner, keeping in 

mind that maximization and minimization are equivalent problems, i.e., 

 

Maximize: 𝑓(𝑥)                 is equivalent to                   minimize: −𝑓(𝑥) 

  

Example: Find the maximum for 𝑓(𝑥, 𝑦) = 𝑥2𝑦 with the condition that (𝑥, 𝑦) lies on the circle 

around the origin with radius √3, i.e., 

𝑥2 + 𝑦2 = 3 

Constructing the Lagrange function, we have, 

𝐿(𝑥, 𝑦, 𝜆) = 𝑥2𝑦 + 𝜆(𝑥2 + 𝑦2 − 3) 

Thus, we have three equations: 

𝜕𝐿

𝜕𝑥
= 0   ⟹    2𝑥𝑦 + 2𝜆𝑥 = 0                 (1) 

     

𝜕𝐿

𝜕𝑦
= 0          ⟹    𝑥2 + 2𝜆𝑥 = 0                 (2) 

     

𝜕𝐿

𝜕𝜆
= 0     ⟹    𝑥2 + 𝑦2 − 3 = 0                 (3) 

Solving the equations, clearly, there are 4 critical points: 

(√2, 1),   (−√2, 1);   (√2, −1), (−√2, −1) 

By evaluating the Lagrangian at these points, we find 

𝑓(√2, 1) = 2,        𝑓(−√2, 1) = 2 

and 

𝑓(√2, −1) = −2,       𝑓(−√2, −1) = −2 

Therefore, the criterion function attains a maximum at (√2, 1)  and  (−√2, 1) 

and a minimum at the other two critical points. 

 

 

 

 

 


